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Abstract

We consider the Riemann problem for the two-phase flow model, proposed by Baer and Nunziato [Int. J. Multi-

phase Flows 12 (1986) 861]. It describes the flame spread and the deflagration-to-detonation transition (DDT) in gas-

permeable, reactive granular materials. The model is given by a non-strictly hyperbolic, non-conservative system of

partial differential equations. We investigate the structure of the Riemann problem and construct the exact solution for

it. We establish that the solution across one wave is not unique and propose to use the evolutionarity criterion to single

out the admissible solution. Due to special structure of the Riemann problem for the Baer–Nunziato model, we are able

to introduce a notion of a weak solution for it. Finally, we propose a number of test cases, based on the exact solution

to the Riemann problem for the Baer–Nunziato model.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

One popular approach to describe two-phase flows is to use so-called homogenized or averaged mixture

models. Within the framework of these models, the phases are treated as interpenetrating continua. The

governing equations for the averaged phase quantities are obtained by averaging of the single-phase bal-

ance equations. For the derivation of such models, we refer to Ishii [17], Nigmatulin [22], Drew and

Passman [10].

Homogenized models have been used to describe a large variety of two-phase flows. A partial list of

references include spray modeling [8,25], deflagration-to-detonation transition (DDT) in gas-permeable,

reactive granular materials [5,6,11,14,18,19,23], multiphase mixtures [26], and bubble flow [13].
Nowadays, a more or less established model is given by a system of partial differential equations, which

includes the two continuity, two momentum, and two energy equations for both phases. The averaging of
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the single phase equations results in additional terms, which describe the interaction between the phases.

These are the mass transfer terms for the continuity equations, the momentum exchange terms for the

momentum equations, and the energy exchange terms for the energy equations. The exact expressions for
the transfer terms are usually unknown and one has to use some additional considerations (experimental

data, simplified models, etc.) to formulate them.

Mathematically, the phase interaction is described with both differential interaction terms, and non-

differential source terms. Due to the differential interaction terms the overall system of governing equations

cannot be written in divergence form. It is said that the system is non-conservative, in opposite to con-

servation laws, which by definition are in divergence form. The differential phase interaction terms, which

prevent the system from being conservative, are called non-conservative terms.

The non-conservative character of the system has major consequences both for its mathematical anal-
ysis, and numerical solution. Concerning the mathematical analysis, one has the following issues. It is clear

that the solution may become discontinuous, e.g., via a shock wave. Then, the differentiation is not

determined in the classical sense, so one needs to introduce a weak solution. However, since the system is

non-conservative, one cannot use the corresponding definition from the theory of distributions used for

conservation laws. Also, one cannot define the Rankine–Hugoniot shock conditions as it is done for

conservation laws.

Numerically, one has difficulties in discretizing the non-conservative terms. Currently, the theory of

numerical methods for non-conservative systems is largely absent. There is no criterion how one should
design a numerical scheme for such systems. Also, there is a lack of test problems with an exact solution.

Therefore, it is difficult to compare different numerical methods for non-conservative systems.

This paper is concerned with the study of one of the most established non-conservative models for two-

phase flows, the Baer–Nunziato (BN) model [5]. It describes the deflagration-to-detonation transition

(DDT) in gas-permeable, reactive granular materials. We restrict ourselves to the homogeneous BN model,

i.e., without the non-differential phase interaction terms, and investigate a simple initial-value problem for

it, the Riemann problem. Our interest in this problem is motivated by its relatively simple mathematical

structure, compared to the models for multiphase mixtures [26] or two-phase flows with micro-inertia [13].
We believe that the investigation of the homogeneous BN model can give a guideline in the study of more

complicated models like those mentioned above. Also, a solution to the Riemann problem provides a

building block for a wide class of numerical methods, namely the Godunov-type methods, see e.g. [29] for a

review. Finally, the exact solution to the Riemann problem is an invaluable test case which is useful in

assessing the performance of numerical methods.

The main results of the paper are the following. We present a procedure to construct exact solutions to

the Riemann problem for the homogeneous BN model. The usual ‘‘direct’’ solution to this problem consists

in finding a solution for given initial data. However, this appears to be very complicated: The waves in the
solution can overlap with each other, so one has to consider a number of different cases. Instead, we

propose what we call the ‘‘inverse’’ solution to the Riemann problem: We fix the configuration of the

Riemann problem, and look for initial data which are compatible with it. We note that the solution to the

Riemann problem for the homogeneous BN model is not unique. This follows from our work [4].

It appears that the solution across one wave, the solid contact discontinuity, is also not unique: For a

given state on one side of it, there exist up to two possible states on the other side. We propose a selection

criterion for the admissible solution: The evolutionarity criterion. The notion of evolutionarity is discussed

in the context of gas dynamics, see e.g. [20, § 87], and in magnetohydrodynamics, see e.g. [12].
Finally, we propose a number of test cases for the homogeneous BN model, using the ‘‘inverse’’ solution

to the Riemann problem described above. Note that the mathematical structure of the BN model is similar

to the structure of several other models [13,26]. Therefore, one can try numerical methods for the non-

conservative models of the type [13,26] on the test cases for the homogeneous BN model, and compare the

numerical results with the exact solution.
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The paper is organized as follows. In Section 2, we briefly present the characteristic analysis of the

homogeneous BN model. Section 3 is devoted to investigating the properties of the solid contact discon-

tinuity in the solution to the Riemann problem. In Section 4, we study the analogies between the flow inside
of the solid contact and the classical converging–diverging nozzle, see e.g. [7, Chapter V]. In Section 5, we

note that for the Riemann problem, the original non-conservative system of governing equations is

equivalent to some conservative system locally. This allows us to introduce the notion of a weak solution for

the Riemann problem. In Section 6, we describe the procedure of the ‘‘inverse’’ solution to the Riemann

problem for the homogeneous BN model. Section 8 is devoted to the cases when some of the waves in the

solution of the Riemann problem approach each other and coincide in the limit. Finally, in Section 9, we

propose several test problems, based on the exact solution of the Riemann problem. As an example, we

assess the performance of the method for compressible multiphase flows which we have proposed in [3], and
discuss the results.
2. Characteristic analysis

The characteristic analysis of the BN model was carried out by Embid and Baer [11]. Therefore, here we

will only present the results which are used in subsequent sections; for details we refer to [11].

Since the BN model [5] describes the flame spread in gas-permeable granular solids, the two phases under
consideration are solid and gas. We will denote them with subscripts a and b, respectively. Let qk be the

density, uk the velocity, pk the pressure, Ek the total specific energy, and ak the volume fraction of the phase

k ¼ a; b. Then, the system of governing equations for the homogeneous BN model can be written in the

following form:

ou

ot
þ ofðuÞ

ox
¼ hðuÞ oaa

ox
; ð2:1Þ

with

u ¼

aa
aaqa

aaqaua
aaqaEa

abqb

abqbub
abqbEb

2
666666664

3
777777775
; fðuÞ ¼

0

aaqaua
aaqau

2
a þ aapa

aauaðqaEa þ paÞ
abqbub

abqbu
2
b þ abpb

abubðqbEb þ pbÞ

2
666666664

3
777777775
; hðuÞ ¼

�ua
0

þpb
þpbua

0

�pb
�pbua

2
666666664

3
777777775
: ð2:2Þ

In what follows, we will consider the Riemann problem for the system (2.1), i.e., equip it with piecewise
constant initial data

uðx; 0Þ ¼ uL; x6 0;
uR; x > 0:

�
ð2:3Þ

As usual, we will assume that the solution to the Riemann problem (2.1) and (2.3) is self-similar, i.e.,

uðx; tÞ ¼ uðnÞ; n ¼ x
t
:

Observe that the system (2.1) cannot be written in divergence form, i.e., it is non-conservative. Indeed, the

non-conservative terms hðuÞðoaa=oxÞ and the first equation of (2.1) prevent it from being written in di-

vergence form. Note that for the case aa ¼ const:, the system decouples into the two sets of Euler equations
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for the phases a and b. For the mixture, one can get the conservative balance equations by summing the

corresponding single-phase equations.

It is clear that the solution to (2.1) can become discontinuous, e.g., across a shock wave. Then, the
differentiation in (2.1) is not determined in the classical sense and one needs to define a weak solution for

(2.1). However, it is not possible to do this analogously to conservation laws, as in, e.g. [28]. Also, it is not

clear what are the Rankine–Hugoniot shock relations for (2.1) in case of aa 6¼ const. A definition of a weak

solution for general non-conservative systems was given by Dal Maso et al. [9]. In Section 5, we give a

different definition of a weak solution for the particular case of the Riemann problem (2.1) and (2.3). We

can also easily obtain the Rankine–Hugoniot shock relations for the Riemann problem to (2.1) and (2.3),

see Sections 5 and 8.2.

In order to close the system (2.1), we need to provide additional relations. One of these relations is the
saturation constraint

aa þ ab ¼ 1:

Two further relations are the equations of state (EOS) for each phase. In order to avoid difficulties

with thermodynamic modeling of solid materials, we use the so-called stiffened gas EOS [21] for each

phase,

ek ¼
pk þ ckpk

qkðck � 1Þ ; k ¼ a; b; ð2:4Þ

where ck and pk are the constants, specific for the phase k. One can show that this EOS satisfies the standard

convexity assumptions of gas dynamics [7].

For simplicity, let us rewrite the system (2.1) in primitive variables

ov

ot
þ AðvÞ ov

ox
¼ 0; ð2:5Þ

with

A ¼

ua 0 0 0 0 0 0
0 ua qa 0 0 0 0

pa�pb
aaqa

0 ua 1=qa 0 0 0

0 0 qac
2
a ua 0 0 0

� qb
ab
ðub � uaÞ 0 0 0 ub qb 0

0 0 0 0 0 ub 1=qb

� qbc
2
b

ab
ðub � uaÞ 0 0 0 0 qbc

2
b ub

2
6666666664

3
7777777775
; v ¼

aa
qa

ua
pa
qb

ub
pb

2
666666664

3
777777775
: ð2:6Þ

The eigenvalues of the matrix AðvÞ are

k0 ¼ ua;

k1 ¼ ua � ca; k2 ¼ ua; k3 ¼ ua þ ca;

k4 ¼ ub � cb; k5 ¼ ub; k6 ¼ ub þ cb;

ð2:7Þ

where ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckðpk þ pkÞ=qk

p
is the sound speed, k ¼ a; b. Since all of the eigenvalues (2.7) are real, the

system (2.1) is hyperbolic, although not strictly hyperbolic. Indeed, situations are possible, when some of

the eigenvalues of the solid phase can coincide with some of the gas phase. Note also that k0 ¼ k2 ¼ ua is a
double eigenvalue.

In [11], it was shown that the eigenvectors of the matrix AðvÞ become linearly dependent in the points in

the flow, where any one of conditions
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aa ¼ 0; ab ¼ 0; c2b � ðub � uaÞ2 ¼ 0 ð2:8Þ

holds. In this case, the system (2.1) is said to be parabolic degenerate, i.e., not hyperbolic anymore. In what

follows, we will always consider two-phase mixtures, i.e., the case of pure phases aa ¼ 0 and ab ¼ 0

will be excluded. In Section 8.3, we provide a physical interpretation for the degenerate case

c2b � ðub � uaÞ2 ¼ 0.

The analysis of [11] shows that the 1-, 3-, 4-, and 6-characteristic fields are genuinely nonlinear, and the

0-, 2-, and 5-fields are linearly degenerate. There are six Riemann invariants for the 1-, 2-, and 3-charac-

teristic fields, namely,
• Two invariants, analogous to the ones for single-phase gas dynamics, see e.g. [29].

• Three invariants, expressing the constancy of gas variables, e.g., qb, ub, pb.
• The solid volume fraction aa.
There are six Riemann invariants for the 4-, 5-, and 6-characteristic fields, namely,

• Two invariants, analogous to the ones for single-phase gas dynamics.

• Three invariants, expressing the constancy of solid variables, e.g., qa, ua, pa.
• The solid volume fraction aa.
Finally, there are five Riemann invariants for the 0-characteristic field, since the eigenvalue k0 ¼ k2 ¼ ua has
constant multiplicity equal to 2. They are

w1 ¼ ua;

w2 ¼ gb;

w3 ¼ abqbðua � ubÞ;

w4 ¼ aapa þ abpb þ abqbðua � ubÞ2;

w5 ¼
ðua � ubÞ2

2
þ c2b
cb � 1

;

ð2:9Þ

where gb ¼ ðpb þ pbÞ=qcb
b is the isentrope of phase b.

The solution to the Riemann problem (2.1) and (2.3) is composed of shocks, rarefaction waves, and

contact discontinuities. Across the rarefaction waves and contacts, the corresponding Riemann invariants

are constant.
3. Properties of the solid contact

The solid contact discontinuity, which corresponds to the 0-characteristic field, plays a special role in the

solution to the Riemann problem (2.1) and (2.3). As we have seen in Section 2, the volume fraction aa
changes only across this wave. Therefore, the non-conservative terms of the system (2.1), i.e., hðuÞðoaa=oxÞ
and the first equation of (2.1), act only along the solid contact. Consequently, the study of the solid contact

will reveal the role of the non-conservative terms of the system (2.1). Here, we assume for simplicity that the

solid contact does not coincide with other waves in the solution to the Riemann problem (2.1) and (2.3).

The case of coinciding waves will be considered as a limit case in Section 8.
Denote the variables to the left of the solid contact by the subscript 0 and the variables to the right of it

right by the subscript 1. Across the solid contact, the Riemann invariants (2.9) are constant,

ua0 ¼ ua1 ¼: ua; ð3:1aÞ
gb0 ¼ gb1 ¼: gb; ð3:1bÞ
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ab0qb0ðub0 � uaÞ ¼ ab1qb1ðub1 � uaÞ ¼: M ; ð3:1cÞ
aa0pa0 þ ab0pb0 þ ab0qb0ðub0 � uaÞ2 ¼ aa1pa1 þ ab1pb1 þ ab1qb1ðub1 � uaÞ2 ¼: P ; ð3:1dÞ
ðub0 � uaÞ2

2
þ c2b0
cb � 1

¼ ðub1 � uaÞ2

2
þ c2b1
cb � 1

¼: E: ð3:1eÞ

Observe that the solid density qa does not appear in (3.1), it acts as a free parameter. Note also, that the

system (3.1) is an underdetermined system for the parameters at the left and at the right of the solid contact.

Indeed, we have 14 unknowns

aai; qai; uai; pai; qbi; ubi; pbi; i ¼ 0; 1

but only five equations. Therefore, one has to fix nine unknowns. We choose to fix the following variables:

aa0; qa0; ua0; pa0; qb0; ub0; pb0; aa1; qa1:

Then, the number of the equations in (3.1) and the number of unknowns coincide and one might hope to
get a solution.

Note that the system (3.1) is reminiscent of the mass, momentum, and energy balance across a dis-

continuity, propagating with the speed ua, for the Euler equations for the gas phase. Consider the case

ab0 ¼ ab1;

and the other parameters keep their values. Remember that this corresponds to the decoupled Euler

equations for the gas and solid phases, see the system (2.1). So, the gas flow does not see the solid

phase, and obviously the gas parameters do not change across ua. Thus, there always exists the trivial

solution

qb0 ¼ qb1;

ub0 ¼ ub1;

pb0 ¼ pb1:

ð3:2Þ

Note that this is the unique admissible solution of (3.1). In what follows, we will refer to this case as

‘‘Euler’’, and the case

ab0 6¼ ab1

as ‘‘multiphase’’. In what follows, we will often fix the phase variables qk; uk; pk, k ¼ a; b, and consider the

Euler case ab0 ¼ ab1 and the multiphase case ab0 6¼ ab1. If we let

ab0
ab1

! 1;

then the multiphase case will turn into the Euler case.

Combining the equations of (3.1), we get the following nonlinear equation for the gas density to the right

of ua

F ðqb1Þ ¼
1

2

M
ab1q

� �2

þ cbgbq
cb�1
b1

c � 1
� E ¼ 0: ð3:3Þ
b1 b
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The derivative of F ðqÞ is

F 0ðqÞ ¼ � M2

a2b1q
3
þ cbgbq

cb�2: ð3:4Þ

At the point q�, the function F ðqÞ reaches its minimum

q� ¼
M2

a2b1cbgb

� �ð1=ðcbþ1ÞÞ

: ð3:5Þ

Indeed, for all q < q� we have

qcbþ1 < qcbþ1
� ¼ M2

a2b1cbgb
;

giving

cbgbq
cb�2 <

M2

a2b1q
3
:

Consequently,

F 0ðqÞ < 0

for all q < q�. Analogously,

F 0ðqÞ > 0

for all q > q�. Note also that F ðqÞ ! þ1 as q ! þ0 or q ! þ1.

Depending on the sign of F ðq�Þ, Eq. (3.3) can have no, one, or two roots. We will investigate each case
separately.

3.1. No roots

Consider the solid particle speed invariants (3.1). We will fix the left state 0, and look for the root of Eq.

(3.3) for the variable right gas volume fraction ab1.
We can rewrite (3.1c) as

qb0ðub0 � uaÞ ¼
ab1
ab0

qb1ðub1 � uaÞ ¼
M
ab0

¼: ME;

where the subscript E stands for Euler. Indeed, ME is equal to the mass flow for the Euler case ab0 ¼ ab1.
With a constant ab0, we have the constant ME at the right-hand side.

Let us rewrite Eq. (3.3) as follows:

F ðqb1Þ ¼
1

2
M2

E

ab0
ab1

� �2
1

q2
b1

þ cbgbq
cb�1

b1

cb � 1
� E ¼ 0: ð3:6Þ

For the Euler case

ab0
ab1

¼ 1

and (3.6) always has at least one trivial solution (3.2). For variable ab1 2�0; 1½ (multiphase case), we have

ab0
ab1

2�ab0;1½:
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It is obvious that if for some positive C, C big enough,

ab0
ab1

> C; ð3:7Þ

then (3.6) has no roots, since E; gb; qb > 0 and cb > 1. Thus for all ab1, ab1 < ab0=C, Eq. (3.6) has no roots.

Decreasing ab1 (or increasing aa1, aa1 ¼ 1� ab1), one necessarily gets no solution for some value of ab1.

3.2. One or two roots

Consider again the equations

F ðqb1Þ ¼
1

2

M
ab1qb1

� �2

þ cbgbq
cb�1

b1

cb � 1
� E ¼ 0 ð3:8Þ
F 0ðqÞ ¼ � M2

a2b1q
3
þ cbgbq

cb�2: ð3:9Þ

Suppose first that (3.8) has two roots. Denote them ~qb1,
~~qb1,

~qb1 < ~~qb1;

see Fig. 1. Then

F 0ð~qb1Þ < 0; F 0ð~~qb1Þ > 0:

Using (3.1c)

M2

a2b1
¼ ðub1 � uaÞ2q2

b1

we can rewrite (3.9) as

�ðub1 � uaÞ2 þ c2b1 ¼ F 0ðqb1Þqb1; ð3:10Þ
Fig. 1. Graph of F ðqb1Þ.



442 N. Andrianov, G. Warnecke / Journal of Computational Physics 195 (2004) 434–464
where c2b1 ¼ cbðpb1 þ pbÞ=qb1 is the gas sound speed squared. We see that the volume fraction ab does not

appear in this equation. This means that it should hold for any values of ab0, ab1 on both sides of the soild

contact. In particular, for the Euler case ab0 ¼ ab1, the admissible solution is (3.2),

qb0 ¼ qb1;

ub0 ¼ ub1;

pb0 ¼ pb1:

Thus, we have the two roots ~qb1,
~~qb1 of (3.8) as candidates for qb1. We choose the one for which

signð�ðub0 � uaÞ2 þ c2b0Þ ¼ signð�ðub1 � uaÞ2 þ c2b1Þ ð3:11Þ

since all these quantities are identical on the left- and right-hand side. By (3.10), it is equivalent to the

condition

signðF 0ðqb0ÞÞ ¼ signðF 0ðqb1ÞÞ: ð3:12Þ

For the multiphase case ab0 6¼ ab1, we also choose by a continuity argument the root of (3.8), which satisfies
the condition (3.12). It corresponds to the admissible root for the Euler case, if ab1 would be equal to ab0.

A motivation for this choice is the following. Consider the Euler case ab0 ¼ ab1, and let the admissible

Euler root be ~qb1. Then, it satisfies the criterion (3.12). Now let us deviate the ratio ab0=ab1 slightly, i.e,

ab0
ab1

:¼ 1þ �; � small:

Then, for this multiphase case the admissible root is also ~qb1, it cannot suddenly become ~~qb1. We summarize

these ideas by formulating the following definition.

Definition 3.1. The physically admissible state behind the solid contact is determined by the root of (3.3),

which satisfies the condition (3.11).

The case of the single root of (3.8) corresponds to the degenerate situation, when the gas velocity relative

to ua is sonic to the right of R, i.e., jub1 � uaj ¼ cb1. We will discuss this case in greater detail in Section 8.3.
3.3. Evolutionary discontinuities

The above results show that the solution across the solid contact is not unique. That is, for a fixed

state on one side of it, one can find at most two states on the other side of it. Then, one of these states

is considered to be non-admissible according to Definition 3.1. Note that the condition behind it is
actually more intuitive than physical. Also, it is restricted only to the Riemann problem for the BN

model.

However, a non-unique solution across a discontinuity is not something reserved for a particular system.

It is well known that for a general conservation law, a weak solution is not unique, see, e.g. [28]. In that

case, one employs different kinds of entropy conditions, in order to rule out the non-physical solutions.

A naive use of an entropy condition would be to look at the entropy across the solid contact and to draw

conclusions on its basis. Observe that this would not work: Entropy is constant across the solid contact, see

(3.1b). We also cannot use the entropy inequality from the theory of conservation laws, see, e.g. [28], since
the system (2.1) is non-conservative.

In order to single out one solution across the solid contact, we propose to use the following admissibility

criterion.



N. Andrianov, G. Warnecke / Journal of Computational Physics 195 (2004) 434–464 443
Definition 3.2 (Evolutionarity criterion). Consider a discontinuity R in a physical flow, which is governed by

a p � p hyperbolic system. Denote the number of characteristics, incoming to R by n and coinciding with R
by c. Further, denote the number of unknown variables on the both sides of R together with its speed by

N ¼ 2p þ 1 and the number of relations across R by m. Then R is called evolutionary, if

N ¼ nþ cþ m:

For the evolutionary discontinuity R, all N variables on it can be found using nþ c relations along the

incoming and coinciding characteristics, and m relations across R. Therefore, R is well determined in the

flow, i.e., it evolves in time.

The notion of evolutionarity goes back to at least Landau and Lifshitz [20, § 87], who studied the stability

of shock waves in gas dynamics. Evolutionary discontinuities are also discussed in context of magneto-

hydrodynamics, see e.g. [12].

In order for a contact discontinuity to be evolutionary, the number of characteristics impinging on it
from the one side must be equal to the number of characteristics leaving it from the other side.

For a strictly hyperbolic system, the evolutionarity criterion is equivalent to the Lax shock condition.

For resonant hyperbolic systems, i.e., for systems of type (4.2), it is equivalent to the criterion of Isaacson

and Temple [15,16]. For proofs of the above statements, see [2].

3.4. Evolutionarity of the solid contact

Let us investigate, under which conditions the solid contact R will be an evolutionary discontinuity. For
simplicity, we assume that there are no gas characteristics which coincide with R. The case of coinciding gas
characteristics will be considered in Section 8.

Denote the number of characteristics, impinging on the solid contact R from the both sides by n, co-
inciding with R by c, and leaving it by s. Since the order of the system (2.1) is p ¼ 7, there will be

N ¼ 2p þ 1 ¼ 15 unknowns at R. Across the solid contact R, the p � 2 ¼ 5 Riemann invariants are con-

stant. Since the speed of R is ua ¼ k0 ¼ k2, there are m ¼ 5þ 1 ¼ 6 conditions across it. Also, there are

c ¼ 2þ 2 ¼ 4 solid characteristics, coinciding with R from the both sides.

According to Definition 3.2, the solid contact will be evolutionary if

N ¼ nþ cþ m:

Using the values for N , c, and m found above, we obtain

15 ¼ nþ 4þ 6; so n ¼ 5: ð3:13Þ

At this stage, it is advantageous to separate the incoming characteristics according to the phases a and b.

Denote the number of the incoming characteristics for the solid phase by na and for the gas phase by nb, so
that n ¼ na þ nb. Remember that the characteristics of each phase are ordered, cf. (2.7). Since the charac-

teristics with the speed k0 ¼ k2 ¼ ua coincide with the solid contact R, the characteristic with the speed

k3ðu0Þ ¼ ua0 þ ca0 will always impinge on R from the left, and the one with k1ðu1Þ ¼ ua1 � ca1 from the right.

Therefore, we have

na ¼ 2:

Using this in (3.13), we obtain

nb ¼ 3: ð3:14Þ

We have thus proved the following theorem.



Fig. 2. Four possible positions of the gas characteristics around an evolutionary solid contact.
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Theorem 3.3. Consider the Riemann problem (2.1) and (2.3) and assume that there are no gas characteristics,

which coincide with the solid contact R, propagating with the velocity ua. Then R is evolutionary iff there are

precisely three gas characteristics, which impinge on it from the both sides.

Next, let us show that if the state behind the solid contact is physically admissible in the sense of

Definition 3.1, then the solid contact is an evolutionary discontinuity.

Theorem 3.4. Consider the Riemann problem (2.1) and (2.3) and assume that there are no gas characteristics,

which coincide with the solid contact R, propagating with the velocity ua. Then R is evolutionary iff the state

behind R is physically admissible in the sense of Definition 3.1 i.e.,

signð�ðub0 � uaÞ2 þ c2b0Þ ¼ signð�ðub1 � uaÞ2 þ c2b1Þ: ð3:15Þ
Proof. From the constancy of the third Riemann invariant across the solid contact, i.e., from (3.1c), it

follows that

ub0 < ua () ub1 < ua:

Analogously,

ub0 > ua () ub1 > ua:

Considering different cases in Eq. (3.15), we can find different positions of the gas characteristics around the

evolutionary solid contact, see Fig. 2. In each case in Fig. 2, there are precisely three gas characteris-
tics, which impinge on the solid contact. By Theorem 3.3, the solid contact R is then an evolutionary

discontinuity. �
4. Gas dynamics analogy

It has been recognized by several authors [6,11,27] that the homogeneous BN model (2.1) is reminiscent

of the Euler equations in the duct of variable cross-section A ¼ AðxÞ,
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oAq
ot

þ oAqv
ox

¼ 0;

oAqv
ot

þ oAðqv2 þ pÞ
ox

¼ p
oA
ox

;

oAqE
ot

þ oAvðqE þ pÞ
ox

¼ 0:

ð4:1Þ

For a derivation, we refer to, e.g. [30]. Usually, the cross-section A ¼ AðxÞ is assumed to be a priori given.

However, we can consider it as an additional unknown, and supply the trivial equation At ¼ 0 for deter-

mining it. Then, the system (4.1) becomes

oA
ot

¼ 0;

oAq
ot

þ oAqv
ox

¼ 0;

oAqv
ot

þ oAðqv2 þ pÞ
ox

¼ p
oA
ox

;

oAqE
ot

þ oAvðqE þ pÞ
ox

¼ 0:

ð4:2Þ

We can close this system with the stiffened gas EOS,

e ¼ p þ cp
qðc� 1Þ ;

where c and p are thermodynamic constants.

Note that the system (4.2) can be formally obtained from the homogeneous BN model (2.1), if one sets

there

ua :¼ 0 ð4:3Þ

and uses the correspondence

ðab; qb; ub; pb;EbÞ $ ðA; q; v; p;EÞ: ð4:4Þ

Thus, the volume fraction of the phase b plays the role of the variable cross-section A, and the density,
velocity, pressure, and energy of the phase b have the corresponding meanings for the gas flow in a duct of

variable cross-section.

The stationary smooth solutions of the system (4.2) are given by

Aqv ¼ const:;

g ¼ const:;

v2

2
þ c2

c� 1
¼ const:;

ð4:5Þ

where g ¼ ðp þ pÞ=qc is the isentrope and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp þ pÞ=q

p
is the sound speed, see e.g. [7]. These relations

express the conservation of mass, entropy, and Bernoulli�s law, respectively.
Note that the relations (4.5) are very much similar to Eqs. (3.1), expressing the constancy of the Riemann

invariants across the solid contact. This gives us the reason to consider the solid contact as the porous film

of the infinitesimal thickness d, see Fig. 3. Each pore represents a duct of variable cross-section. The solid

phase forms the walls of the duct. The values of ab at the both sides of this porous film are given and equal



Fig. 3. Left: Gas flow through the solid contact. Right: a pore of the variable cross-section.
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to ab0 and ab1, respectively. Also, the whole gas state is given on the one side of the film. Within the duct, the

gas volume fraction ab changes from ab0 to ab1 and represents the change of the area of cross-section. The

gas flow in the duct is governed by the relations (3.1). Using the similarity between (3.1) and (4.5), we can

repeat the classical analysis of [7] to obtain the equality

dab
ab

¼ v2

c2b

�
� 1

�
dv
v
; ð4:6Þ

where now v ¼ ub � ua is the gas velocity relative to the velocity of the solid contact, and cb is the gas sound
speed.

We can easily establish several properties of this pore flow. Firstly, we know that the flow is isentropic,

see (3.1b). Therefore, no shocks are allowed in the flow. For simplicity, let the relative velocity v be positive,
v > 0. The case of negative v can be considered analogously. Then, from (4.6) we can state that for in-

creasing ab the relative speed v increases when v2 > c2b and decreases when v2 < c2b. Using (3.1), we conclude

that in the direction of increasing ab the gas flow is expanded when it is supersonic, and compressed when it is

subsonic. Finally, the gas flow relative to the solid contact is supersonic (subsonic) at the one side of the solid

contact, iff it is also supersonic (subsonic) at the other side of it. To see this, consider the different cases in the

proof of Theorem 3.4. It is convenient to represent these results in the following table, where " denotes

increase, and # decrease:

Note that the duct can have several throats, see Fig. 3. By the classical theory of Laval nozzle, see e.g. [7],

the gas flow can change its type from subsonic to supersonic and vice versa only at the throat. From the

property established above, we conclude that this change can occur only an even number of times.

To summarize, we have rigorously shown the role of the non-conservative terms on the right-hand side

of the homogeneous BN model (2.1), which was previously stated by Embid and Baer [11] and Bdzil et. al.

[6] from physical considerations. Namely, the gas volume fraction measures the porosity of the solid phase.
Then, the change in porosity acts as a nozzle which can either accelerate or decelerate the gas flow.

Supersonic ab " v " qb # cb #
ab # v # qb " cb "

Subsonic ab " v # qb " cb "
ab # v " qb # cb #
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5. Weak solution to the Riemann problem

As we have mentioned in Section 2, one cannot define a weak solution to the system (2.1) as it is done for

systems of conservation laws. The reason is that the system (2.5) cannot be written in divergence form. For

the Riemann problem (2.1) and (2.3), however, this difficulty appears only along one line, namely the solid

contact, where the volume fraction aa is discontinuous. In the rest of domain, the volume fraction is

constant and equal to its left or right value. Therefore, everywhere away from the solid contact the system

(2.1) reduces to the system of conservation laws

ut þ fðuÞx ¼ 0; ð5:1Þ

where

u ¼

qa

qaua
qaEa

qb

qbub
qbEb

2
66666664

3
77777775
; fðuÞ ¼

qaua
qau

2
a þ pa

uaðqaEa þ paÞ
qbub

qbu
2
b þ pb

ubðqbEb þ pbÞ

2
66666664

3
77777775
: ð5:2Þ

Note that this system is just the two sets of decoupled Euler equations for the phase a and b. For the system

(5.1), we can define a weak solution in the usual manner, see Definition 5.2.

Let us look for a conservative system of equations such that the Rankine–Hugoniot relations for this

system are exactly (3.1). We will investigate, to which system does the original system (2.1) reduce under the

conditions (3.1a) and (3.1b). Using ua ¼ const: in (2.1), we get

oaa
ot

þ ouaaa
ox

¼ 0; ð5:3aÞ
oaaqa

ot
þ oaaqaua

ox
¼ 0; ð5:3bÞ
ðpa � pbÞ
oaa
ox

þ aa
opa
ox

¼ 0; ð5:3cÞ
opa
ot

þ ouapa
ox

¼ 0; ð5:3dÞ
oabqb

ot
þ oabqbub

ox
¼ 0; ð5:3eÞ
oabqbub
ot

þ oðabqbu
2
b þ abpbÞ
ox

¼ �pb
oaa
ox

; ð5:3fÞ
oabqbEb þ oabubðqbEb þ pbÞ ¼ pbua
oaa

: ð5:3gÞ

ot ox ox
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Using (5.3c) and (5.3d) in (5.3f) and (5.3g), we obtain

oabqbub
ot

þ oðabqbu
2
b þ aapa þ abpbÞ

ox
¼ 0; ð5:4Þ
oðabqbEb � aapaÞ
ot

þ oabubðqbEb þ pbÞ
ox

¼ 0: ð5:5Þ

Also, Eq. (5.3g) is equivalent to

ogb
ot

þ ub
ogb
ox

¼ 0: ð5:6Þ

It is an easy matter to check that the system

oaa
ot

þ ouaaa
ox

¼ 0; ð5:7aÞ
oaaqa

ot
þ oaaqaua

ox
¼ 0; ð5:7bÞ
opa
ot

þ ouapa
ox

¼ 0; ð5:7cÞ
oabqb

ot
þ oabqbub

ox
¼ 0; ð5:7dÞ
oabqbub
ot

þ oðabqbu
2
b þ aapa þ abpbÞ

ox
¼ 0; ð5:7eÞ
oðabqbEb � aapaÞ
ot

þ oabubðqbEb þ pbÞ
ox

¼ 0; ð5:7fÞ
ogb
ot

þ ub
ogb
ox

¼ 0 ð5:7gÞ

is equivalent to the system (5.3) when ua ¼ const. Posing also the condition (3.1b), gb ¼ const:, Eqs. (5.3g)
and (5.7g) drop off. Thus, the original non-conservative system (2.1) is equivalent to the conservative

system

oU

ot
þ oFðU; uaÞ

ox
¼ 0; ð5:8Þ

with

U ¼

aa
aaqa

pa
abqb

abqbub
abqbEb � aapa

2
6666664

3
7777775
; FðU; uaÞ ¼

aaua
aaqaua
paua

abqbub
abqbu

2
b þ aapa þ abpb

abubðqbEb þ pbÞ

2
6666664

3
7777775

ð5:9Þ
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under the conditions (3.1a) and (3.1b).

The Rankine–Hugoniot relations for the system (5.8) across the solid contact are

ua U1ð �U0Þ ¼ F1 � F0; ð5:10Þ

where U and F are given by (5.9). Under the conditions (3.1a) and (3.1b), the relations (5.10) are equivalent

to

uaðab1qb1 � ab0qb0Þ ¼ ab1qb1ub1 � ab0qb0ub0;

uaðab1qb1ub1 � ab0qb0ub0Þ ¼ ðP1 þ ab1qb1u
2
b1Þ � ðP0 þ ab0qb0u

2
b0Þ;

ua ðab1qb1Eb1½ � aa1pa1Þ � ðab0qb0Eb0 � aa0pa0Þ� ¼ ab1ub1ðqb1Eb1 þ pb1Þ � ab0ub0ðqb0Eb0 þ pb0Þ:

ð5:11Þ

It is easy to see that the conditions (3.1a) and (3.1b) together with (5.11) are equivalent to the relations (3.1),

expressing the constancy of the Riemann invariants across the solid contact.

Next, let us define a weak solution to the Riemann problem for a conservation law

ut þ fðuÞx ¼ 0; uðx; 0Þ ¼ uL; x6 0;
uR; x > 0:

�
ð5:12Þ

As usual, we consider the self-similar solutions, i.e.,

uðx; tÞ ¼ uðnÞ; n ¼ x
t
:

Then, the Riemann problem (5.12) is equivalent to

�unnþ fðuÞn ¼ 0; uð�1Þ ¼ uL; uð1Þ ¼ uR: ð5:13Þ

Let us suppose for the moment, that u is a classical solution of (5.13). Denote by Sðn0; n1Þ the sector,

bounded by the rays n0 and n1. Also, let C1
0ð�n0; n1½Þ be the class of all test functions / which vanish outside

of the open interval �n0; n1½. We multiply (5.13) by / and integrate over all n,

Z 1

�1
ð�unnþ fðuÞnÞ/ðnÞdn ¼

Z n1

n0

ð�unnþ fðuÞnÞ/ðnÞdn:

Integrating by parts gives

Z n1

n0

ð�unnþ fðuÞnÞ/dn¼ð�n/uþ/fðuÞÞjn1n0 þ
Z n1

n0

ðuð/nÞn� fðuÞ/nÞdn¼
Z n1

n0

ðuð/nÞn� fðuÞ/nÞdn¼0:

ð5:14Þ

Thus, if u is a classical solution of (5.13), then (5.14) holds true for all / 2 C1
0ð�n0; n1½Þ. However, u does not

need to be differentiable anymore. This gives rise to the following definition.

Definition 5.1. A bounded measurable function u ¼ uðnÞ is called a weak solution to the Riemann problem

(5.13) in a sector Sðn0; n1Þ if u satisfies (5.14) for all / 2 C1
0ð�n0; n1½Þ.

Let us check, if we can get the Rankine–Hugoniot conditions across a discontinuity from this

definition. Consider a ray of discontinuity s and a sector Sðs0; s1Þ such that s 2 Sðs0; s1Þ and s is the only

discontinuity there. Let / 2 C1
0ð�s0; s1½Þ be some test function. The weak solution of (5.13) in Sðs0; s1Þ is

defined by
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Z s1

s0

ðuð/nÞn � fðuÞ/nÞdn ¼ 0:

Splitting the integral and integrating by parts,Z s1

s0

ðuð/nÞn � fðuÞ/nÞdn ¼
Z s

s0

ðuð/nÞn � fðuÞ/nÞdnþ
Z s1

s
ðuð/nÞn � fðuÞ/nÞdn

¼ ð�n/uþ /fðuÞÞjss0 þ
Z s

s0

ð�unnþ fðuÞnÞ/dnþ ð�n/uþ /fðuÞÞjs1s

þ
Z s1

s
ð�unnþ fðuÞnÞ/dn

¼ /ðsÞsðul � urÞ þ /ðsÞðfðurÞ � fðulÞÞ ¼ 0; ð5:15Þ

where ul ¼ uðs� 0Þ and ur ¼ uðsþ 0Þ. Dividing (5.15) by /ðsÞ 6¼ 0, we obtain the usual Rankine–Hugoniot
relations across s.

Now, using Definition 5.1, we can define a weak solution to the Riemann problem for the non-conser-

vative system (2.1). We will utilize the above established fact that everywhere locally this non-conservative

system is equivalent to the conservative one, either (5.1) or (5.8).

Definition 5.2. Consider a sector Sðn0; n1Þ, such that the solid contact lies in it, and assume that the solid

contact is the only ray of discontinuity there. Then, a function u ¼ uðnÞ 2 L1
locðRÞ is called a weak solution

of the Riemann problem (2.1) and (2.3), if for any small � > 0

1. To the left of Sðn0; n1Þ, i.e., n 2 ½�1; n0�,Z n0

�1
ðuð/nÞn � fðuÞ/nÞdn ¼ 0; / 2 C1

0ð� �1; n0 þ �½Þ;

uðnÞ ¼ uðx; tÞ, fðuÞ ¼ fðuÞ, and u, fðuÞ are given by (5.2).

2. To the right of Sðn0; n1Þ, i.e., n 2 ½n1;1�,Z 1

n1

ðuð/nÞn � fðuÞ/nÞdn ¼ 0; / 2 C1
0ð�n1 � �;1½Þ;

uðnÞ ¼ uðx; tÞ, fðuÞ ¼ fðuÞ, and u, fðuÞ are given by (5.2).

3. Inside of Sðn0; n1Þ, i.e., n 2 ½n0; n1�,Z n1

n0

ðuð/nÞn � fðuÞ/nÞdn ¼ 0; / 2 C1
0ð�n0 � �; n1 þ �½Þ;

uðnÞ ¼ Uðx; tÞ, fðuÞ ¼ FðU; uaÞ, and U, FðU; uaÞ are given by (5.9).
Remark 1. Note that in the sector Sðn0 � �; n0 þ �Þ, Definitions 1 and 3 coincide, and in the sector

Sðn1 � �; n1 þ �Þ, Definitions 2 and 3 coincide.

Remark 2. In [9], Dal Maso et al. introduce a notion of the non-conservative product and give a definition

of a weak solution to a general non-conservative system on its basis. In particular, this applies also to the

system (2.1). In contrast to the definition of [9], we have used some physical observations in Definition 5.2,
which are valid only for systems of a certain structure like (2.1). We believe that our definition may give an

idea for constructing of approximate Riemann solvers for non-conservative systems like (2.1).
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6. ‘‘Inverse’’ solution to the Riemann problem

Consider the Riemann problem (2.1) and (2.3). Since the system (2.1) has six distinct characteristic

speeds (2.7), the solution to the Riemann problem (2.1) and (2.3) is composed of at most six waves, namely

shocks, rarefactions, and contacts for the two phases k ¼ a; b. These waves separate at most seven constant

states in the solution of the Riemann problem. Remember that the system (2.1) is non-strictly hyperbolic, so

some waves can coincide or overlap with each other.

The exact solution to the Riemann problem (2.1) and (2.3) is obtained as follows: For given end states
uL; uR, one looks for admissible waves such that they connect uL with uR in the phase space. However, a

corresponding numerical procedure would be very complicated. Indeed, the wave speeds in the solution of

the Riemann problem (2.1) and (2.3) cannot be ordered a priori. Therefore, one has to consider several

possible cases. Analogous to the results of [2], we expect that the exact solution to the Riemann problem

(2.1) and (2.3) can be reduced to the solution of a system of nonlinear algebraic equations, which can be

solved with some iterative method.

Here, we do not pursue the goal to solve the Riemann problem (2.1) and (2.3) in the ‘‘direct’’ way

described above. Instead, we prescribe the configuration of the Riemann problem, i.e., the mutual position
of the waves, and look for the end states uL and uR, which are compatible with it. In other words, we

construct the exact solution to the Riemann problem. In what follows, we will refer to this procedure as the

‘‘inverse’’ solution of the Riemann problem (2.1) and (2.3).

To be more precise, we fix the configuration of the Riemann problem as follows. We choose the in-

termediate state u0 to the left of the solid contact R, and fix the volume fractions to the left and to the right

of R. Further, we prescribe which waves should be to the left of R, and which to the right. Depending on the

wave, we determine its position by specifying the following quantities:

• Shock: given shock speed s, family
• Rarefaction: given pressure behind, family

• Contact: given density behind.

This process is illustrated in Fig. 4. In the procedure of constructing the exact solution we exclude the cases,

in which some gas waves coincide with the solid contact R. The case of coinciding waves requires special

investigation and will be addressed in Section 8. As we have seen in Section 5, the system (2.1) reduces to
Fig. 4. ‘‘Inverse’’ solution of the Riemann problem.
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the two sets of the usual Euler equations (5.1) away from the solid contact R. Therefore, we can use the

usual admissibility conditions on the waves there. For the solid contact 0-wave, we use the evolutionarity

criterion of Section 3.4.
The procedure of constructing the exact solution to the Riemann problem for the homogeneous BN

model (2.1) has been implemented in a software package CONSTRUCT [1]. With its help, we CON-

STRUCTed several test cases for the system (2.1), see Section 9. We hope that these tests will be helpful in

assessing numerical methods for non-conservative systems of the type (2.1). Our idea is that interested

researches can try their numerical methods on Riemann problems for the homogeneous BN model (2.1),

and compare the numerical results with exact solutions.

In Section 4, we have shown that the Euler equations in a duct of variable cross-section (4.2) can be

formally obtained from the homogeneous BN model (2.1) under conditions (4.3) and (4.4). Consequently,
one can CONSTRUCT [1] the exact solution to the Riemann problem for the system (4.2) exactly as it is

done for the homogeneous BN model (2.1). One just has to set the solid velocity ua equal to zero, and

consider only gas waves in the solution to the Riemann problem, cf. (4.3) and (4.4). In doing so, we can get

test problems for numerical methods for the Euler equations in the duct. See Section 9 for an example.
7. Non-uniqueness of the Riemann solution

Obviously, for a given configuration of the Riemann problem to (2.1), we find the corresponding initial

data (2.3) uniquely. However, for certain initial data (2.3), the configuration of the Riemann problem

cannot be determined uniquely. In other words, we can point out another configuration of the Riemann

problem to (2.1), such that it will correspond to the same initial data (2.3). Moreover, for certain initial data

the solution to the Riemann problem (2.1) and (2.3) does not exist. To show this, we will use the analogies

between the homogeneous BN model (2.1) and the Euler equations in a duct (4.2), established in Section 4.

The system (4.2) belongs to a class of resonant hyperbolic systems, see Isaacson and Temple [15,16]. In

[4], we provide an analysis of the Riemann problem for the system (4.2) and show that for certain initial
data, its solution is non-unique. Also, for some initial data, the Riemann problem for (4.2) does not have a

solution. Since the system (4.2) can be formally obtained from the homogeneous BN model (2.1) under

conditions (4.3) and (4.4), the same is true for the Riemann problem (2.1) and (2.3). In [4], we propose an

admissibility criterion in order to rule out non-physical solutions to the Riemann problem for the Euler

equations in a duct (4.2). However, its detailed investigation, as well as its use for the homogeneous BN

model (2.1) is an open question.
8. Coinciding waves

As we mentioned previously, the wave speeds in the solution to the Riemann problem (2.1) and (2.3) can

coincide with each other. Namely, each of the solid waves, associated with the eigenvalues

k1 ¼ ua � ca; k0 ¼ k2 ¼ ua; k3 ¼ ua þ ca

can coincide with either of gas waves, associated with the eigenvalues

k4 ¼ ub � cb; k5 ¼ ub; k6 ¼ ub þ cb:

However, the solid variables do not change across the gas 4-, 5-, and 6-waves, and the gas variables do not
change across the solid 1- and 3-waves, see Section 2. Therefore, the potentially interesting cases arise only

when the solid contact 0-wave coincides with either a gas 4-, 5-, or 6-wave. Since the gas 4- and 6-waves can

be either rarefactions or shock waves, and the gas 5-wave is a contact discontinuity, we will consider these

three cases separately.
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8.1. Coinciding contacts

Consider the situation when the gas contact approaches the solid contact R from the right. The case
when the gas contact approaches R from the left can be handled analogously. Denote the states, separated

by the contacts, with u0, u1, and u, and the phase variables in these states with subscript 0, 1, and no

subscript respectively, see Fig. 5. Across the contacts, the corresponding Riemann invariants are constant,

see Section 2. Therefore

ak � ak1; qa � qa1; uk � uk1; pk � pk1; k ¼ a; b; ð8:1Þ

but in general qb 6¼ qb1. Also, ua0 � ua1 � ua.
We fix the state u0 and the volume fractions to the right of R. The gas contact will approach R from the

right if

ub1 þ � ¼ ua; � ! �0: ð8:2Þ

We wish to investigate how will the gas variables in u change; the values of the solid variables in u coincide

with those in u1, see (8.1).

The state u1 is determined by the admissible root of (3.3),

F ðqb1Þ ¼
1

2

M
ab1qb1

� �2

þ cbgbq
cb�1

b1

cb � 1
� E ¼ 0: ð8:3Þ

By (8.2) and (3.5), we observe that the function F ðqb1Þ reaches its minimum at the point

q� ¼
a2b0q

2
b0

a2b1cbgb
�2

� �ð1=ðcbþ1ÞÞ

! 0; � ! þ0:

Thus, the smallest of two roots qb1 ¼ ~qb1 of the Eq. (8.3) becomes infinitesimal,

qb1 ! 0; � ! þ0;

cf. Fig. 1. Let us show that this root is not admissible. Indeed, according to (8.2) ub1 > ua, so by (3.1c) also

ub0 > ua. Therefore, there are precisely two gas characteristics which impinge on R from the left, see Fig. 5.
In order for R to be evolutionary, there must be one gas characteristic which impinges on it from the right,

see Theorem 3.3. This is equivalent to

ub1 � cb1 < ua:
Fig. 5. Gas contact approaches R from the right. Two gas characteristics impinge on R from the left, and one from the right.
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Since ub1 > ua, one can rewrite this condition as

ðub1 � uaÞ2 � c2b1 < 0: ð8:4Þ

Using this in (3.1e), one has

ðub1 � uaÞ2 � c2b1 ¼ 2E � cb þ 1

cb � 1
c2b1 ¼ 2E � cb þ 1

cb � 1
gcbq

cb�1

b1 < 0:

This inequality will be fulfilled iff qb1 exceeds some positive constant, i.e.,

gcbq
cb�1

b1 >
cb � 1

cb þ 1
2E: ð8:5Þ

Therefore, the root qb1 ! 0 is not admissible, and we can restrict ourselves only to the values of qb1 which

satisfy the condition (8.5). For such qb1 Eqs. (3.1c) and (8.2) imply that

ub1 ! ua: ð8:6Þ

Let us rewrite (3.1e) as follows

ðub0 � uaÞ2

2
þ cbgbq

cb�1
b0

cb � 1
¼ ðub1 � uaÞ2

2
þ cbgbq

cb�1
b1

cb � 1
: ð8:7Þ

Using (8.2) and (8.6) in (8.7), we have

qb1 ! qb0: ð8:8Þ

Finally using (8.8) in (3.1b), we have

pb1 ! pb0: ð8:9Þ

Since by (8.1) ub � ub1 and pb � pb1, we have

ub ! ua pb ! pb0: ð8:10Þ

To summarize, we have proved the following theorem.

Theorem 8.1. Consider the situation when the gas contact approaches the solid contact from the right, i.e.

ub1 þ � ¼ ua, � ! �0. Then the gas pressure to the right of the solid contact approaches the corresponding

value to the left of it,

pb � pb1 ! pb0:

At the limit,

pb � pb1 ¼ pb0:
8.2. Shock vs. solid contact

Finally, we describe the behaviour of the solution, when an admissible gas shock wave approaches the

solid contact R. Here, we consider the shock to the right of R, i.e.,

s ! ua; s > ua; ð8:11Þ
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where s is the shock speed. The case when the shock approaches R from the left can be handled

analogously.

Denote the states, separated by R and the shock, with u0, u1, and u, and the phase variables in these states
with subscript 0, 1, and no subscript, respectively. Thus the notations are analogous to the case when a gas

contact approaches the solid contact, see Fig. 5.

Similar to the case of approaching contacts, see Section 8.1, we fix the state u0 and the volume fractions

to the right of R. We wish to investigate how will the gas variables in u change; the values of the solid

variables in u coincide with those in u1, see Section 2.

Across the solid contact R, the Riemann invariants (3.1) are constant. Across the shock, the Rankine–

Hugoniot conditions are

qb1ðub1 � sÞ ¼ qbðub � sÞ;
qb1ðub1 � sÞ2 þ pb1 ¼ qbðub � sÞ2 þ pb;

ðub1 � sÞ2

2
þ c2b1
cb � 1

¼ ðub � sÞ2

2
þ c2b
cb � 1

:

ð8:12Þ

Using (8.11) and (3.1) in (8.12), we get

qb1ðub � sÞ ! M
ab1

¼: M1; ð8:13aÞ
qb1ðub � sÞ2 þ pb !
1

ab1
Pð � aa1pa1Þ ¼: P1; ð8:13bÞ
ðub � sÞ2

2
þ c2b
cb � 1

! E: ð8:13cÞ

Multiply (8.13c) by 2qb, and substract the result from (8.13b). Then

pb
cb þ 1

1� cb
� 2cbpb

cb � 1
! P1 � 2qbE: ð8:14Þ

From (8.13a) and (8.13b), we have

pb ! P1 �
M2

1

qb

:

Substituting this into (8.14), we get the following relation for qb,

P1

�
�M2

1

qb

�
cb þ 1

1� cb
� 2cbpb

cb � 1
! P1 � 2qbE:

In the limit, it reveals the quadratic equation for qb,
2Eðcb � 1Þq2
b � 2cbðP1 þ pbÞqb þM2

1 ðcb þ 1Þ ¼ 0: ð8:15Þ

This equation has two roots. One of them is always qb0, and corresponds to the trivial solution when u � u1,

so that the shock wave between u and u1 disappears. Therefore, we take the other root of (8.15). Using this

root in (8.13), we find the gas velocity and pressure in u as follows:
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ub ¼
M1

qb

þ s;

pb ¼ P1 �
M2

1

qb

:

ð8:16Þ

Thus, we see that the state behind the shock approaches some finite state with the gas variables given by

(8.16), as the shock approaches the solid contact.

8.3. Sonic state attached to the solid contact

When either of gas characteristic speeds k1;3 ¼ ub � cb coincides with the solid contact speed

k0 ¼ k2 ¼ ua, the homogeneous BN model (2.1) becomes parabolic degenerate, cf. (2.8). Such situation

arises when a gas 1- or 3-characteristic approaches the solid contact

ub � cb ! ua ð8:17Þ
and in the limit touches it, ub � cb ¼ ua.

In order to give an interpretation to the parabolic degeneracy conditions (2.8), we can use the analogy

between the flow inside of the solid contact and in the converging-diverging nozzle, see Section 4. We can
represent the solid contact as a porous film, such that each pore is a converging-diverging nozzle, see Fig. 3.

The flow in the pore is governed by the relations (4.6). Consider the flow such the condition (8.17) holds at

the cross-section ab0, i.e., at the state u0 to the left of R. Then, the relative gas flow there is almost sonic,

M0 ¼
j ub0 � ua j

cb0
¼ 1þ �; � ! �0;

where M is the local relative Mach number. Depending on the sign of � and on the difference ab1 � ab0, the
gas flow in the pore either accelerates and expands, or decelerates and compresses, leading to the very

different states u1 to the right of R. Thus, such a sonic configuration is not stable.

We can also give an interpretation to the case when Eq. (3.3) has no roots. As it was mentioned in

Section 3, this is the case when ab1 becomes sufficiently small. According to the results of Section 4, the

change of the gas parameters to the right of the solid contact is determined whether the gas relative speed

ub � ua is subsonic or supersonic. When it is subsonic, then the gas flow accelerates and expands, so the

sound speed decreases and the relative Mach number M ¼ jub1 � uaj=cb1 increases. As soon as the gas

volume fraction falls below its critical value, where M ¼ 1, a shock intervenes and the isentropic flow
does not exist anymore. On the other hand, when the gas relative flow is supersonic, the relative Mach

number decreases. Again, for the gas volume fraction below its critical value, the isentropic flow does not

exist.

It is an easy matter to check that the solid contact can lie inside of the gas rarefaction only in the trivial

case when ab0 ¼ ab1, i.e., when the phases a and b are decoupled. Indeed, let us consider the gas 1-rare-

faction (the case of 3-rarefaction can be done analogously). In the 1-rarefaction wave the characteristic

speed ub � cb varies continuously, so on both sides of the solid contact with velocity ua
ub0 � cb0 ! ua; ub1 � cb1 ! ua

and at the limit

ub0 � cb0 ¼ ua; ub1 � cb1 ¼ ua:

Using this in (3.1e), we get

cb0 ¼ cb1:
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Combining this equality with (3.1b), we obtain that

qb0 ¼ qb1; pb0 ¼ pb1:

Finally, from (3.1c) we have

ab0 ¼ ab1:

9. Test cases

As we have seen in Section 2, the homogeneous BN model (2.1) consists of the two sets of the Euler

equations for both phases, coupled with the non-conservative terms. Therefore, a ‘‘good’’ numerical scheme

for the system (2.1) should be necessarily ‘‘good’’ for the Euler equations. Here the notion ‘‘good’’ denotes

the properties like convergence to the entropy solution, reasonable accuracy, robustness, etc. For the Euler

equations, one has a number of test cases, intended to check these properties for each particular scheme. An
excellent reference is Toro [29].

However, for the two-phase problems, there exists only a small number of test cases, and usually they

incorporate several physical effects, specific material properties, and external forces, see e.g. [24]. All these

make it difficult to compare numerical methods for two-phase flow problems.

Here, we propose a number of test cases using the exact solution toRiemann problems, whichwas obtained

in Section 6. The exact solutions were found by running the package CONSTRUCT [1]. Remember that the

procedure to construct exact solutions to theRiemannproblem for both the homogeneousBNmodel (2.1) and

the Euler in a duct (4.2) is essentially the same, see Section 6. Therefore, we can use CONSTRUCT [1] for the
both systems (2.1) and (4.2).

Some tests presented below are designed to assess the behaviour of numerical methods for Riemann prob-

lemswithalmostcoincidingwavespeeds.Asweshall shortlysee, somemethodscanhavehardtimeonsuchtests.

As an example, we test a numerical method for compressible multiphase flows which we have proposed

in [3]. In what follows, it will be referred to as VFRoe, stands for Volumes Finis Roe in French. As it is clear

from the name, it employs the features of both Roe�s and finite volume methods. At each cell boundary, one

solves the linearized Riemann problem as in the Roe�s method. Then, we calculate the numerical flux

function as the physical flux in the intermediate state of the solution of the Riemann problem. For the non-
conservative terms, we use some physically motivated discretization, see [3] for details. In [3], we show the

robustness and accuracy of the method on several numerical examples.

Here, we compare the numerical results of VFRoe with the exact solutions to the Riemann problems for

the Euler equations in the duct of variable cross-section (4.2), and for the homogeneous BN model (2.1). To

see clearly the effects of VFRoe discretization, we present here the numerical results of the first order ac-

curacy. The extension to the second order is described in [3]. We have always used 300 mesh cells in the

calculations below. For simplicity, we have used the ideal gas EOS, i.e., ck ¼ 1:4 and pk ¼ 0 in (2.4),

k ¼ a; b. The initial position of the discontinuity is always 0.5.

9.1. Euler equations in the duct of variable cross-section

Consider the following Riemann problem:

The solution consists of the 1-shock, traveling to the left, stationary 0-wave corresponding to the jump in

the cross-section, 2-contact, and the 3-rarefaction. The comparison of the numerical solution with the exact

one is presented in Fig. 6.

AL qL vL pl AR qR vR pR

0.6 0.96 1.0833 2.8333 0.7 1.7741 1.1187 4.0
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Fig. 6. The Riemann problem for the Euler equations in the duct of variable cross section.

458 N. Andrianov, G. Warnecke / Journal of Computational Physics 195 (2004) 434–464
9.2. Test cases for the BN model

Test 1: Single solid contact. Consider the following Riemann problem for the BN model:

Its solution consists of the single solid contact, propagating with the velocity 0.3. The numerical results are

presented in Fig. 7. In this test, the jump of the volume fraction aaR � aaL ¼ 0:5.
Test 2: Coinciding shocks and rarefactions. A particular issue on the Riemann problem for Eqs. (2.1) is

that several waves can coincide with each other. However, the gas parameters do not change across the

solid waves (except of the solid contact) and vice versa, see Section 2. Thus, the numerical solution across

these waves should be independent of the presence of the wave of the other phase. If we take the initial data

as follows

then the Riemann solution consists of two coinciding 1-shock waves for the gas and solid, and the gas 3-

shock inside of the solid 3-rarefaction. The structure of the Riemann problem and the numerical results for

this test are presented in Fig. 8.

Test 3: Coinciding contacts. When the solid and gas contacts approach each other, both ua and pb are

almost constant there, see Section 8.1. Therefore, the non-conservative terms

pb
oaa
ox

� opbaa
ox

; pbua
oaa
ox

� opbuaaa
ox

Phase k akL qkL ukL pkL akR qkR ukR pkR

a 0.8 2 0.3 5 0.3 2 0.3 12.8567

b 0.2 1 2 1 0.7 0.1941 2.8011 0.10

Phase k akL qkL ukL pkL akR qkR ukR pkR

a 0.1 0.2068 1.4166 0.0416 0.2 2.2263 0.9366 6.0

b 0.9 0.5806 1.5833 1.375 0.8 0.4890 )0.70138 0.986
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Fig. 7. The numerical results for Test 1.
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near the solid contact. Thus, this test should not pose serious difficulties. This configuration occurs if we
take the following initial data

The structure of the Riemann problem and the numerical results for this test are presented in

Fig. 9.

Test 4: Gas shock approaches solid contact. In the limit, i.e., when the gas shock coincides with the solid
contact, the jump conditions across this ‘‘double discontinuity’’ are given in Section 8.2. To achieve such a

configuration, one may take the following initial data

The structure of the Riemann problem and the numerical results for this case is presented in

Fig. 10.
Test 5: Gas rarefaction attached to the solid contact. Consider the following Riemann problem

Phase k akL qkL ukL pkL akR qkR ukR pkR

a 0.1 0.9123 1.6305 1.5666 0.9 0.8592 )0.0129 1.1675

b 0.9 2.6718 )0.050 1.5 0.1 1.3359 0.5438 1.5

Phase k akL qkL ukL pkL akR qkR ukR pkR

a 0.5 2.1917 )0.995 3.0 0.1 0.6333 )1.1421 2.5011

b 0.5 6.3311 )0.789 1 0.9 0.4141 )0.6741 0.0291

Phase k akL qkL ukL pkL akR qkR ukR pkR

a 0.5 2 )1 2 0.1 1 )1 8.3994

b 0.5 0.2702 )3.4016 0.1 0.9 0.4666 )2.6667 0.2148
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Fig. 8. The Riemann problem for Test 2.
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The exact solution to this test consists of a gas rarefaction, approaching the solid contact from the left. In

the limit, a parabolic degeneracy occurs, see Section 8.3. The structure of the Riemann problem and the

numerical results are shown in Fig. 11.

9.3. Discussion of numerical results

The presented results have a very different quality for the various configurations. When the jump in

volume fraction is not too big, the method is quite reliable, see e.g. the results for the Euler equations in the

duct in Fig. 6. As expected, the results are also good for Test 3, see Fig. 9.
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Fig. 9. The Riemann problem for Test 3.
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However, it is obvious that for big jumps in volume fraction the VFRoe method gives inadequate

results. The numerical solution exhibits oscillations near the solid contact, which do not disappear as

the mesh is refined. In the course of time, these oscillations are transported downstream, see e.g. the

results for Test 1 in Fig. 7. The results for Test 2 in Fig. 8 show that the waves in different phases

affect each other, which should not be the case. Observe the undershoots in solid density and velocity in

Fig. 8. The methods behaves unsatisfactory in Test 4, where the gas shock approaches the solid contact.

The numerical solution deviates strongly from the exact one, see Fig. 10. The reason for this is clear:

The discretization of the non-conservative terms in VFRoe is obtained for the special case of constant
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Fig. 10. The Riemann problem for Test 4.
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velocity and pressure, see [3] for details. For Test 4, this is of course violated, which leads to wrong

numerical results in Fig. 10.
10. Conclusions

The investigation of the non-conservative, non-strictly hyperbolic BN model [5] is difficult from both

analytical and numerical points of view. The analytical solution to the Riemann problem for it can be non-

unique. For certain initial data, the Riemann solution even does not exist, cf. [4]. On the other hand, it is

not clear how to design numerical methods for the BN model. A physically reasonable discretization of

non-conservative terms may fail miserably. We believe that this will be also the case for non-conservative
models which are similar to the BN model, e.g. the ones introduced in [13,26]. We hope that the test cases of



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Position x

T
im

e 
t

u
a

←Gas rarefaction

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Solid density at t=0.1

0 0.2 0.4 0.6 0.8 1
−1.01

−1

−0.99

−0.98

−0.97

−0.96
Solid velocity

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
Solid pressure

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Solid volume fraction

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4
Gas density at t=0.1

0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2
Gas velocity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gas pressure

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1
Gas volume fraction

Fig. 11. The Riemann problem for Test 5.
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Section 9 will be helpful for constructing of efficient numerical methods for such models. Also, the idea

behind the definition of a weak solution of Section 5 may be helpful in designing of approximate Riemann

solvers for such models.
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